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Abstract Demography plays a large role in cultural evolution through its ef-

fects on the effective rate of innovation. If we assume that useful inventions 

are rare, then small isolated societies will have low rates of invention. In small 

populations, complex technology will tend to be lost as a result of random loss 

or incomplete transmission (the Tasmanian effect). Large populations have 

more inventors and are more resistant to loss by chance. If human populations 

can grow freely, then a population-technology-population positive feedback 

should occur such that human societies reach a stable growth path on which 

the rate of growth of technology is limited by the rate of invention. This sce-

nario fi ts the Holocene to a fi rst approximation, but the late Pleistocene is a 

great puzzle. Large-brained hominins existed in Africa and west Eurasia for 

perhaps 150,000 years with, at best, slow rates of technical innovation. The 

most sophisticated societies of the last glacial period appear after 50,000 years 

ago and were apparently restricted to west and north-central Eurasia and North 

Africa. These patterns have no simple, commonly accepted explanation. We 

argue that increased high-frequency climate change around 70,000–50,000 

years ago may have tipped the balance between humans and their competi-

tor-predators, such as lions and wolves, in favor of humans. At the same time, 

technically sophisticated hunters would tend to overharvest their prey. Perhaps 

the ephemeral appearance of complex tools and symbolic artifacts in Africa 

after 100,000 years ago resulted from hunting inventions that allowed human 

populations to expand temporarily before prey over exploitation led to human 

population and technology collapse. Sustained human populations of moder-

ate size using distinctively advanced Upper Paleolithic artifacts may have ex-

isted in west Eurasia because cold, continental northeastern Eurasia–Beringia 

acted as a protected reserve for prey populations.

In October 1838, that is, fi fteen months after I had begun my system-

atic inquiry, I happened to read for amusement Malthus on Popula-

tion, and being well prepared to appreciate the struggle for existence 
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which everywhere goes on from long-continued observation of the 

habits of animals and plants, it at once struck me that under these 

circumstances favourable variations would tend to be preserved, and 

unfavourable ones to be destroyed. The results of this would be the 

formation of a new species. Here, then I had at last got a theory by 

which to work.

—Charles Darwin, from his autobiography (1968 [1902])

Demography famously played a foundational role in Darwin’s formulation of the 

theory of natural selection. It is also central to the discipline of ecology. The big 

lesson that Darwin took from Malthus was that the potential for exponential popu-

lation increase ensured that the struggle for existence would be a general feature 

of nature. True, the fi rst individuals to reach a remote island might not experience 

appreciable competition for a few generations. But exponential growth would 

soon lead to a large population, generating competition. Natural selection would 

then begin to favor any heritable variation for competitive ability that existed in 

the population. A glance at modern textbooks on ecology and evolution reveals a 

continuing concern in these disciplines with the interaction of demographic and 

evolutionary processes (e.g., N. Barton et al. 2007; Begon et al. 2006). Topics of 

contemporary interest are far broader than Darwin might have imagined. Ecolo-

gists are interested in the evolution of the basic demographic properties of spe-

cies (life history theory). Evolutionists are interested in how population size and 

density affect evolution by drift and density-dependent selection. These are just a 

small sample.

Cultural evolution exhibits many of the same properties as genetic evolu-

tion, although the details are different (Boyd and Richerson 2005; Campbell 1965; 

Cavalli-Sforza and Feldman 1981; Durham 1991). One of the main differences 

between cultural and genetic evolution is that cultural evolution is more rapid than 

genetic evolution, potentially much more rapid. Cultural evolution includes the 

possibility of individuals actively seeking out new cultural variants. Desirable in-

novations are often passed from person to person on a much shorter time scale than 

the human generation time. Another major difference is that the cultural system is 

expensive. If we assume that our long juvenile period and large brain are neces-

sary to maintain an advanced system of cultural inheritance, then humans pay a 

high overhead cost for having culture. Aiello and Wheeler (1995) and Kaplan et 

al. (2000) discuss how human life history has adapted to exploit the advantages of 

culture while paying its costs.

Darwin’s basic idea implies a time scale separation between demographic 

and evolutionary processes. In this paper we explore whether the separation of time 

scales also applies to the human case with the faster pace of cultural evolution. 

We explore three time periods, the Middle and Upper Paleolithic, the Holocene up 

to the emergence of modern societies, and the modern period. We conclude that 

separation of time scales works for all but the modern period. The idea of time 

scales is used in the physical environmental sciences to simplify problems with 
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complex interactions between processes. If one process happens on a short time 

scale and the other one on a long time scale, then one can often assume that the 

short time scale process is at an equilibrium (or in some more complex state that 

can be described statistically) with respect to factors governed by the long time 

scale process. If the short time scale and long time scale processes interact, we can 

often imagine that at each time step in the evolution of the long time scale process, 

the short time scale process is at “equilibrium.” A separation of time scales, if jus-

tifi ed, makes thinking about many problems of coupled dynamics much easier.

The capacity for exponential growth at growth rates we actually observe im-

plies that the demographic time scale is quite short. The evolutionary time scale is 

much longer. Darwin had some appreciation that the evolutionary time scale was 

of the same order as the geological time scale, which he estimated (correctly) to 

be some hundreds of millions of years for the then-known fossil record beginning 

with the Cambrian. A separation of time scales is normally justifi ed in organic 

evolution. Populations reach some quasi-equilibrium [there is much ecological 

complexity implied by this term; see, e.g., Strong (1986)] that depends on the ex-

isting adaptation of the population. Selection will favor slow improvements in the 

adaptation of the population, with each increment of adaptive improvement rap-

idly resulting in the re-equilibration of the population given the new adaptation. In 

the words often used by archaeologists, population pressure is to a fi rst approxi-

mation a constant. The struggle for existence can be counted on to apply approxi-

mately steady and constant selective pressure on populations. The direction of the 

pressure may vary as environments change, but the struggle for existence itself 

will only occasionally relax for brief periods. In such a world, the relationship 

between demography and evolution is simple and straightforward. Think in terms 

of the logistic model of population regulation. Populations will typically be at a 

fair fraction of carrying capacity most of the time. Population pressure generated 

by the struggle for existence will act to raise the carrying capacity. The second 

process, responses to selection on the part of the heritable variation of the popula-

tion, will be the rate-limiting step in the evolution of new adaptations.

Because of the more rapid pace of cultural evolution, we need to worry about 

whether there is a time scale separation between the demographic and cultural 

evolutionary time scales. Malthus had the intuition that the cultural evolutionary 

time scale was rapid but still essentially linear relative to the potential for expo-

nential population growth. The linear versus exponential claim is not necessary 

to Malthus’s argument. The rate of change in subsistence supply could also be 

exponential but at a slower exponential factor than the rate of increase of a popula-

tion far from carrying capacity. Malthus did not rely just on mathematics to school 

his intuition. Lindert (1985) examined the data that Malthus had available to him 

in his lifetime. Within the limits of his day, Malthus’s knowledge of demographic 

patterns in different countries was extensive. Lindert argues that not until after 

Malthus’s death did the English economy begin to produce sustained per capita 

growth. On the other hand, the time in which Malthus lived was the beginning of 

the Industrial Revolution. Most likely, the rate of technological improvement that 

HB_81_2-3_FINAL.indb 213HB_81_2-3_FINAL.indb   213 10/8/2009 12:05:20 PM10/8/2009   12:05:20 PM



214 / richerson et al.

Malthus inferred from the data available to him was indeed rapid compared with 

most periods in human history. The Acheulean lasted a million years, and the Au-

rignacian and Gravettian industries of the west Eurasian Upper Paleolithic lasted 

many thousands of years. In the Holocene the fi rst states follow the origins of agri-

culture by about 5,000 years. Thus a separation of the time scales of demographic 

and evolutionary processes is probably normally justifi ed for cultural evolution. 

However, some caution is necessary. In some situations culture may evolve on 

the same time scale as population growth or even faster. In the modern Industrial 

Revolution and demographic transition, major changes in culture and population 

growth rates have occurred on the same time scale. Something similar could have 

happened when the Americas were fi rst colonized by humans (Hamilton and Bu-

chanan 2007). The Clovis hunters might have been a colonizing adaptation that 

evolved into other Paleo-Indian cultures as population pressure took hold a few 

centuries after their advent in North America.

To interpret the historical, archaeological, and paleoanthropological record 

of hominin evolution, we can appeal to three basic causal elements in construct-

ing our models: environment, genes, and culture. Environments generate selec-

tive pressures to which genes and culture respond. The processes of genetic and 

cultural evolution (and gene-culture-environment coevolution) can greatly com-

plicate the translation of selection pressures into responses that are visible in the 

empirical record. For a progressive record such as that of the hominins, in which 

trends toward larger brain size and greater cultural sophistication are the dominant 

large-scale pattern in the data, an interesting question is, What limited “progress” 

at different periods of our evolution? Was environmental change leading the trajec-

tory by means of a more or less monotonic increase in selection for larger brains 

and increased cultural sophistication? Or were genes or culture slow to respond 

to selection pressures that were exerted from the beginning of the Pleistocene or 

even far earlier? In general, we can expect the evolution of any given lineage to be 

historical in the sense of “one damned thing after another,” as Toynbee’s famous 

objection to mainstream history has it (Boyd and Richerson 1992). Even a fairly 

straightforward progressive evolutionary trajectory such as that of the hominins 

may well contain several different regimes in which environment, genes, and cul-

ture played somewhat different roles.

In this paper we review a model that captures some of the ideas just re-

viewed. We use the model to interpret three important “evo-demo” problems 

in human history. The fi rst is the puzzling features of late Pleistocene culture. 

Hominins with large brains apparently arose around 200,000 years ago, includ-

ing anatomically modern people in Africa and Neanderthals in western Eurasia. 

However, with some interesting but controversial exceptions, these species did not 

produce artifacts of a complexity that we observe in living hunter-gatherers until 

50,000 years ago. Then both big-brained forms—certainly anatomical modern 

humans and most likely Neanderthals—began to produce modern-looking stone 

tool kits, perhaps in parallel. Second, we review events surrounding the origins of 

agriculture and its Holocene aftermath. Agricultural innovations led to population 
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increases, but the Holocene agricultural transition occurred in different places at 

different times and reached some places only with the Columbian European con-

quest. Finally, we look at the case of the population explosion and later declines 

in fertility of the last few centuries. The data here are far better than in the more 

ancient cases, but the processes are also unique to this situation. However, this 

uniqueness is important because it demonstrates how the consequences of the 

cultural evolutionary time scale shrinking to the point that it was faster than the 

demographic time scale produces dramatic results. If similar processes had oc-

curred in the past for any length of time, we could be confi dent that they would 

have produced a dramatic archaeological signal.

Our objectives here are limited. We cannot provide a thorough review of 

the literature on paleodemography, paleoecology, and paleoanthropology. We re-

alize that many elements of our scenarios rest on controversial evidence if not 

rank speculation. We do hope to clarify the relationship between demographic and 

cultural evolutionary processes so that we can formulate better hypotheses about 

several of the puzzling aspects of the paleoanthropological record as we currently 

understand it.

A Malthusio-Darwinian Model

The Malthusio-Darwinian model was developed to explicate the separation 

of time scales implied by Darwin’s reading of Malthus (Richerson et al. 2001). 

The application was to the origin of agriculture, but the model was meant to be 

general.

Start with the Logistic Model.  The logistic equation is one simple, widely 

used model of population growth. The rate of change of population density N is 

given by

(1)

where r is the intrinsic rate of natural increase (i.e., the rate of growth of population 

density when there is no scarcity) and K is the carrying capacity (i.e., the equilib-

rium population density when population growth is halted by density-dependent 

checks). In the logistic equation, the level of population pressure is given by the 

ratio N/K. When this ratio is equal to 0, the population grows at its maximum rate; 

there is no population pressure. When the ratio is 1, density dependence prevents 

any population growth at all. It is easy to solve this equation and calculate the 

length of time necessary to achieve any level of population pressure   N/K:

(2)

where 0 is the initial level of population pressure. Let us conservatively assume 

that the initial population density is only 1% of what could be sustained with the 
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use of any given subsistence system and that the maximum rate of increase of 

human populations unconstrained by resource limitation (r) is 1% per year. Under 

these assumptions, the population will reach 99% of the maximum population 

pressure (i.e.,   0.99) in only about 920 years. Serendipitous inventions (e.g., 

the bow and arrow) that increase carrying capacity do not fundamentally alter this 

result. For example, only the rare single invention is likely to so much as double 

carrying capacity. If such an invention spreads within a population that is near its 

previous carrying capacity, it will still face half the maximum population pres-

sure. At an r of 1% such an innovating population will again reach 99% of the 

maximum population pressure in 459 years. Recent work using ratios of young 

people to older people in ancient cemeteries suggests just such a picture when ag-

riculture fi rst made sedentism possible. Birth rates shot up and a new local popu-

lation equilibrium several times as dense as the previous mobile hunter-gatherers 

(some of whom may have done some farming) was reached in a few centuries 

(Bocquet-Appel and Bar-Yosef 2008; Kohler et al. 2008).

One might think that this result is an artifact of the simple model of popula-

tion growth. However, it is easy to add much realism to the model without any 

change of the basic result. Richerson et al. (2001) considered the effects of disper-

sal and more realistic population dynamics. Malthus’s basic conclusion is robust; 

the potential for exponential population increase when rare means that even a 

relatively low-fecundity population, such as that of humans, can fi ll continent-size 

areas with people experiencing considerable population pressure in less than a 

millennium, even if initial population sizes are small.

The Dynamics of Innovation.  So far we have assumed that the carrying ca-

pacity of the environment is fi xed (save where it is increased by fortuitous inven-

tions). However, we know that people respond to scarcity caused by population 

pressure by intensifying production, for example, by shifting from less labor in-

tensive to more labor intensive foraging or by creating innovations that increase 

the effi ciency of subsistence (Boserup 1981). Because innovation increases carry-

ing capacity, intuition suggests that it might therefore delay the onset of popula-

tion pressure. However, this intuition, too, is faulty.

Consider a population of size N in which the per capita income of the popu-

lation is given by

(3)

where ym is the maximum per capita income and I is a variable that represents the 

productivity of subsistence technology. Thus per capita income declines as popu-

lation size increases, but for a given population size, greater productivity raises 

per capita income. As in the previous models, we assume that as population pres-

sure, now measured as falling per capita income, increases, population growth 

decreases. In particular, assume that

y
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 N(y ys ), (4)

where ys is the per capita income necessary for subsistence. If per capita incomes 

are above this value, population increases; if per capita income falls below ys, pop-

ulation shrinks. If I is fi xed, this equation is another generalization of the logistic 

equation. In an initially empty environment, population initially grows at a rate 

(ym ys), but then slows and reaches an equilibrium population size I (ym ys) / 

ys. To allow for intensifi cation, we assume that people innovate whenever their 

per capita income falls below a threshold value yi. Any new technique or skill that 

contributes positively to the human population growth rate, as described by Eqs. 

(3) and (4), would count as an innovation. Thus

 aI(yi y). (5)

When per capita income is less than the threshold value yi, people innovate, in-

creasing the carrying capacity and therefore decreasing population pressure. The 

maximum rate at which innovation can occur is governed by the parameter a. When 

per capita income is greater than the threshold, people will “deinnnovate.” This 

may seem odd at fi rst, but such abandonment of more effi cient technology has been 

observed occasionally. In the prehistoric Great Basin, for example, early  Holocene 

lithic technology is noticeably simpler than the Paleo-Indian technology that im-

mediately preceded it, likely refl ecting increased resource abundance that accompa-

nied Holocene climatic amelioration (Bettinger 1991, Figure 5.4). Later, we discuss 

the Tasmanian effect, in which population size has a direct effect on the rate of inno-

vation and in which complex technology tends to be lost in small populations. The 

basic idea is that the larger the population, the more innovators there are indepen-

dent of the motivation to innovate described by Eq. (5). Diamond (1997) made this 

idea famous in his book Guns, Germs, and Steel. Boone (2002) argues that frequent 

density-independent mortality events may have had the effect of keeping Pleisto-

cene hunter-gather populations well below the environmental carrying capacity. If 

this were true (and we have been unable to make it work in a simple model), it 

would lower the rate of innovation in our model. Thus an important limitation of the 

formal model here is that the rate of innovation does not depend on N.

Aside from population size, it is interesting to consider other factors that might 

regulate the size of a and hence the rate of technological progress. Karl Marx sug-

gested that the rate of social innovation is slow compared with the rate of technical 

innovation and that social conservatism retards the rate of technical progress. This 

idea recurs in many guises (Bettinger and Baumhoff 1982; North and Thomas 1973). 

The gene-culture coevolution process may also be a rate-limiting factor. Recent se-

quence data from the Hap-Map project (Hawks et al. 2007) suggest that agricultural 

innovations induced rapid evolution of human genes. The dietary changes associ-

ated with a shift to starch-rich diets and exposure to epidemic diseases as  agriculture 

dN
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made large dense populations possible apparently can account for many of these 

changes. The adult secretion of lactase to digest milk sugar in dairying populations 

is an example of dietary change, and the several alleles that confer resistance to 

malaria are examples of exposure to epidemic diseases. The need for major genetic 

evolution may well retard the rate of cultural evolution. The model also assumes that 

the innovation rate is smooth. If change occurs in rare large technical revolutions, 

then this is not the right model. It does serve as a useful, relatively simple point of 

departure to link demography and cultural evolution in a sensible model.

If a small pioneer population enters an empty habitat, it experiences two 

distinct phases of expansion. Initially, per capita income is near the maximum, 

and the population grows at the maximum rate. As population density increases, 

per capita income drops below yi, and the population begins to innovate, eventu-

ally reaching a steady-state value

 . (6)

The steady-state per capita income is above the minimum for subsistence but 

below the threshold at which people experience population pressure and begin to 

innovate. At this steady state, population growth continues at a constant rate

(7)

that is proportional to the rate of growth of subsistence effi ciency, measured in 

terms of either human labor or land area, whichever is limiting.

Figure 1 shows the results of the model. A small population initially grows 

rapidly. As population pressure builds, population growth rate slows to a steady 

state in which population pressure is constant, and just enough innovation occurs 

to compensate for population growth. For plausible parameter values the second 

phase of the population growth steady state is reached in less than a thousand years. 

Interestingly, increasing the intrinsic rate of innovation or the innovation threshold 

reduces the waiting time until population pressure is important. Innovation allows 

greater population increases over the long run, but it does not change the time scales 

on which population pressure occurs. The most important factor on time scales of 

a millennium or greater (if not a century or greater, given realistic starting popu-

lations) is the rate of intensifi cation by innovation, not population growth. Thus 

in the conventional Darwinian picture population pressure plays an exceedingly 

important role but on a short time scale. The struggle for existence can be taken for 

granted. Evolution plays out as adaptive innovations on the long time scale increase 

the carrying capacity for the environment for the population in question.

This picture of the interaction of demography and innovation leads to 

predictions that are quite different from those of such scholars as M. N. Cohen 

(1977). For example, we do not expect to see any systematic evidence of increased 

population pressure immediately before major innovations. Population growth is 

likely to result from innovations, not the other way around, on the time scales 
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that we normally observe in the archaeological record. Some examples of actual 

human population growth and cultural innovation do remind one of Figure 1. For 

example, the period between the origins of agriculture and the Industrial Revolu-

tion are roughly along the lines of Figure 1.

Figure 2 shows the relationship between wages and population in England 

and Wales from the centuries before, during, and after the Industrial Revolution. 

The high real wage in the 16th century refl ects the aftermath of plague reductions 

of population. As high population growth overtook the economy of the time, real 

wages fell, which was then followed by a long period of population stagnation. 

Real wages peaked again in the mid-18th century and then declined considerably 

by Malthus’s time in the late 18th and early 19th centuries. Until Malthus’s time, 

his argument held. Population could easily grow faster than the economy, and 

the result was not a commensurate or more than commensurate increase in the 

supply of food and other necessities but rather a fall in wages and a fall in the 

birth rate because of the immiseration of working people. An upward trend in 

population appears to have existed, but wages varied cyclically with no marked 

upward trend.

Figure 1.  In the fi rst century in a new habitat, a small population of humans will initially grow expo-

nentially. By 200 years the population is already experiencing some population pressure 

and begins investing in innovations that raise the environment’s carrying capacity. By 600 

years, the population has settled into a steady-state growth rate determined by the rate of 

innovation. The precise shape of the curve will depend on the parameter values chosen. 

For large parts of human history, population growth rates on the millennial time scale 

were close to 0 (i.e., a steady-state growth rate near 0 even though populations no doubt 

fl uctuated on the century time scale as a result of environmental stochasticity). Note that 

in a population that on average was at 50% of K as a result of environmental stochasticity, 

population pressure would still on average be substantial, presumably tending to lead to 

innovation unless yi is small relative to ym.
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Malthus was probably wrong in thinking that the growth rate of population 

during the Holocene was linear. Actually it was probably something like exponen-

tial, as was the rate of growth of the technology-generated carrying capacity (J. E. 

Cohen 1995). However, the potential rate of exponential population increase was 

almost certainly well in excess of the rate limits set by technologically induced 

increases in human carrying capacity until the last two centuries. Malthus’s ar-

gument broke down after about 1830 in England. Technological improvements 

began to lead to markedly lower prices and to raise real wages even though popu-

lation growth rates were high. A little refl ection will convince us that the rates of 

technological innovation supporting the increase in carrying capacity of the last 

two centuries must be unique in human history. Population growth rates of the 

order of 1–3% per year lead to a large population quickly on the archaeologist’s 

Figure 2.  Real wages, prices, and population in England and Wales, 1541–1913. Based on Lindert 

(1985). The real wage rate and prices derive from data on the wages for southern English 

craftsmen, 1451–1475 (  10 in this fi gure). The price index basis in this fi gure is for the 

same years and equals 20. Both sets of data are from Phelps Brown and Hopkins (1956). 

The population data are for England less Monmouth (Wrigley and Schofi eld 1981). Only 

after about 1820 does the Malthusian pattern of sharply rising population leading to de-

pressed wages and rising prices end.
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time scale. A rate of technological progress suffi cient to raise carrying capacities 

fast enough to sustain or outrun such growth rates necessitates dramatic changes. 

Does anything looking like the last two centuries exist anywhere else in the his-

torical or archaeological record? Perhaps the rapid growth of some Neolithic 

populations and archaic states during their preclassical and classical phases bears 

a careful look in this regard. For the rest of our history, we apparently lived in a 

world very much like Darwin and Malthus imagined. As an aside, archaeologists 

do not seem to try to estimate rates of cultural change, so we do not really know 

whether rates of cultural evolution have, in general, accelerated toward the pres-

ent, although most of us have the impression that this is so, perhaps for the whole 

of hominin history. An interesting and puzzling fact, if true.

What Happened in the Late Pleistocene?

The stylized facts of the late Pleistocene resemble Figure 1 hardly at all. 

Two large-brained hominins lived in Africa and western Eurasia from around 

250,000 years ago to the present: Neanderthals and anatomically modern humans. 

If Trinkhaus (2005) is correct, early anatomically modern humans show many 

archaic features, and well-attested fully modern forms appear only after 30,000 

years ago. Anatomically modern humans (of an archaic cast) date back to about 

200,000 years ago in Africa (McDougall et al. 2005), just before the second to last 

glacial period. During that glacial period and the previous interglacial period, both 

big-brained hominins went on making mode 3 (middle Stone Age/Mousterian) 

stone tools. By around 50,000 years ago, anatomically modern humans in Africa 

were making mode 4 (late Stone Age/Upper Paleolithic) tools and ornaments at 

least in some places in Africa, and they had begun to spread to Eurasia and Aus-

tralia. Neanderthals and other hominins became extinct shortly afterward. Most 

of the details regarding these events are controversial. Some authorities believe 

that several different groups in Africa made mode 4 tools and ornaments as early 

as 75,000 years ago in South Africa (e.g., Mellars 2006b). Some see a gradual re-

cord of increasing cultural sophistication from 200,000 to 50,000 years ago (Mc-

Brearty and Brooks 2000), whereas others think an abrupt increase around 50,000 

years ago better explains the data (Klein 2000). Some controversial evidence sug-

gests that Neanderthals independently began making mode 4 tools before they had 

any contact with anatomically modern humans (d’Errico 2003), and anatomically 

modern humans certainly made mode 3 tools for most of their history, including 

those that reached Australia (Foley and Lahr 1997). Anatomically modern human 

populations in Africa and southwest Asia also made mode 3 tools for tens of thou-

sands of years leading up to the Upper Paleolithic (west Eurasia) and late Stone 

Age (Africa). The same seems true of South Asia (James and Petraglia 2005).

Even more interesting, several investigators suggest that the last glacial pe-

riod was a palimpsest of mode 3 and mode 4 tool-making cultures in Africa and 

Europe and that both big-brained forms made both tool kits (d’Errico 2003; Ja-

cobs et al. 2008; McBrearty and Brooks 2000; Milliken 2007; Trinkhaus 2005). 
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The industries with a mode 4 aspect do become more common and add more fea-

tures in Africa, especially in the period 100,000–50,000 years ago. Mode 4 tools 

plus a full suite of symbolic artifacts, such as paintings and carved art objects, 

dominate the record after about 40,000 years ago in western Eurasia. Elements 

resembling those of the west Eurasian Upper Paleolithic occur in Africa, for ex-

ample, at Blombos Cave (Henshilwood et al. 2002) and in “pre-Aurignacian” situ-

ations in Eurasia (Mellars 2006a). However, the duration and sophistication of the 

west Eurasian Aurignacian and Gravettian appear so far to be unique. In northwest 

China, for example, tools characterized as early Upper Paleolithic (mode 4 but 

lacking many of the fancier elements of the classic Upper Paleolithic) enter the 

area fairly late and are replaced by a much simpler tool kit during the last glacial 

maximum (L. Barton et al. 2007), when human population densities seem to be 

quite small in the area.

Late Pleistocene environments were characterized by high-frequency high-

amplitude climate variation (often called Dansgaard-Oeschger, or D/O, cycles). 

This variation was fi rst resolved in ice cores from Greenland (Ditlevsen et al. 

1996). Subsequent ice and ocean cores have documented this variation in ad-

ditional ice cores and in lake and marine sediments (Richerson et al. 2005). A 

marine core recently raised from the Atlantic margin near Spain provides high-

resolution data for the last four glacial-interglacial cycles (Martrat et al. 2007). 

This core suggests that the high-frequency fl uctuations in the last glacial period 

were especially pronounced compared with the two previous glacial periods and 

especially compared with the fourth glacial period (Figure 3). A core from the 

South Atlantic (40° S) shows a similar pattern (Cortese et al. 2007). The appar-

ent intensifi cation of the Dansgaard-Oeschger cycles over time may have driven 

much of the evolution in human cultures in the last 250,000 years. The very in-

tense Dansgaard -Oeschger cycles after 60,000 years ago are a potential explana-

tion for the spread of modern humans out of Africa and the evolution of mode 4 

toolmakers in western Eurasia. But why would cold, dry, variable environments 

have favored increases in the cultural sophistication of humans?

Figure 3.  Estimated sea-surface temperature in the Eastern Temperate North Atlantic. Modifi ed 

from Martrat et al. (2007). See Martrat’s paper for methods for computing sea-surface 

temperature from ratios of different alkenones preserved in the sediment cores.
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Highly variable paleoclimates no doubt led to highly variable ecosystems 

that potentially had large effects on human evolution and demography. Recent 

advances in understanding the distribution of Pleistocene cultures in terms of their 

ecology promise to one day let us understand human paleoecology in some detail 

(Banks et al. 2006). However, methodological problems are rather severe. For 

example, carbon-14 dates are far too error prone to permit us to link archaeologi-

cal sites to specifi c Dansgaard-Oeschger stadial and interstadial periods. Glacial 

environments were not necessarily unfavorable for humans. Glacial environments 

tended to be sunnier and more arid, as well as colder, than interglacial ones. For-

ests were correspondingly reduced, and open steppe and savanna biomes covered 

larger areas than in the interglacial periods (Huntley and Allen 2003). Open grassy 

biomes have relatively high secondary productivity simply because the vegetation 

is exposed to effi cient large-bodied herbivores that are attractive to human hunters 

(Guthrie 1990). Forests, by contrast, produce much less game because most of the 

biomass is in leaves high in the canopy or in trunks and limbs, and this biomass 

is inaccessible to effi cient large herbivores. The paleoecology suggests that dur-

ing the coldest phases of the Dansgaard-Oeschger events, large areas of the world 

were either very dry or very cold. Human populations in these areas were absent 

or reduced to small numbers. In western Eurasia, Upper Paleolithic people lived 

at reasonable densities but probably only in the southwest and Mediterranean re-

gions during cold stadial periods (Banks et al. 2006), whereas in warmer, wetter 

periods they seem to have expanded as far as central Siberia (Klein 2009). For-

est expansion during short Dansgaard-Oeschger interstadial periods was probably 

limited because trees could not expand their ranges fast enough to recolonize 

them before the next stadial period (Coope 1977). Interstadial warmth and pre-

cipitation probably created large areas of moist steppe-forest mosaic Mammoth 

Steppe biome that would sustain fair densities of human big game hunters.

Variable environments might seem likely to limit rather than favor human 

populations. However, the factor of culture suggests that our species might be able 

to take special advantage of environmental fl uctuations. Because cultural evo-

lution is more rapid than organic evolution, culture is a plausible adaptation to 

Dansgaard-Oeschger cycles (Richerson et al. 2005). Culture may thus have given 

Upper Paleolithic mode 4 toolmakers an adaptive advantage over their competing 

top carnivores. Human rarity before about 50,000 years ago (Atkinson et al. 2008) 

might well have been a result of stiff competition with other carnivores.

Caro and Stoner (2003) reviewed the extensive competition within the 

predatory guild of Africa. Today, cheetah and wild dogs are driven from prime 

areas for large and medium-size herbivores by lions and are restricted to habitats 

with relatively low herbivore density. Both species have low genetic diversity as a 

consequence of their rarity, as do humans. Pliocene-Pleistocene hominin hunter-

scavengers probably had already found a narrow niche in competition with the 

diverse hunting and scavenging guild of the savanna long before the time we focus 

on here (Brantingham 1998). Both mode 3 and mode 4 toolmakers were focused 
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on taking big game, although at least Upper Paleolithic mode 4 people also hunted 

fl eet small game (Stiner 2002).

Upper Paleolithic people were also capable of exploiting plant seeds (Weiss 

et al. 2004), although most excavations do not contain evidence of heavy exploita-

tion of low-ranked plant resources. Because low-ranked plant resources typically 

require laborious milling to make digestion of starch grains effi cient, the presence 

or absence of heavy milling stones should be diagnostic of heavy plant use, even 

in the absence of plant remains. Humans could probably have tracked the ever-

changing kaleidoscope of large animal prey more easily than their competitors 

(lions, dogs, wolves, and hyenas). Humans could fi nd the dynamic, ephemeral 

situations where an herbivore population was temporarily out of equilibrium with 

their prey and exploit the windfall before our competitors could fi gure out the 

rapidly changing ecosystems.

Mode 4 hunters may also have had the weapons and social organization 

to effectively reduce competition from other predators by actively hunting or 

trapping them. Hominins may have been driving predators away from kills for a 

long time. The idea that other predators were our competitors and that lowering 

their populations favored humans was probably well within the capacities of big-

brained late Pleistocene humans to understand.

The highly dynamic, more productive glacial environments would present 

three adaptive challenges for big herbivore hunters. The fi rst challenge would be 

the ability to take large herbivores on a routine basis, in competition with a suite 

of effi cient competitors for this resource. This problem was solved in Middle Pa-

leolithic times by mode 3 toolmakers (Lee-Thorp and Sponheimer 2006; Stiner et 

al. 2000), if only marginally.

The second challenge would be to cope with the uncertainty of a noisy 

environment. Food security problems on time scales ranging from weeks to years 

would presumably have been more severe than for most ethnographically known 

hunter-gatherers. West Eurasian populations of the Upper Paleolithic/late Stone 

Age were evidently much larger than west Eurasian populations in the preceding 

Mousterian/Middle Paleolithic, although both peoples hunted the same suites of 

big game. Upper Paleolithic/late Stone Age people may have found solutions to 

the food security problem that escaped Middle Paleolithic people. Social systems 

for risk reduction are one candidate for such adaptations, in accord with evidence 

for social complexity at least among some Upper Paleolithic people.

The third challenge would be the problem of maintaining a cultural evo-

lutionary system capable of responding to intense millennial and submillennial 

scale variation. Even completely modern people appear to lose the more complex 

elements of their culture when populations become too small. The most expert 

makers of artifacts are few, and in small populations they may be lost by chance. 

The famous case is the Tasmanians, whose tool kit simplifi ed after they were cut 

off from Australia by rising sea level (Henrich 2004; see also Shennan 2001). The 

population on Tasmania at contact times numbered a few thousand. The much 

more complex mainland tool kit was maintained by a population at contact times 
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of a few hundred thousand. Kline and Boyd (n.d.) have shown that technological 

complexity is correlated with population size in Oceania. O’Connell and Allen 

(2007) reviewed evidence that modern humans in Australia during the Pleisto-

cene lived at low population densities and maintained Middle Paleolithic style 

stone tools (see also Brumm and Moore 2005). Powell et al. (2009) simulated a 

metapopulation composed of many subpopulations. The effective population size 

can remain high in such populations if migration between subpopulations is high. 

Social organization innovations that knit formerly isolated small subpopulations 

together might allow complex tools to be acquired and maintained in the cultural 

repertoire even when populations of equivalent overall density but less connected 

maintain only simpler tool kits.

Perhaps the palimpsest of mode 3 and mode 4 industries in time and space 

refl ects the demographic fortunes of populations subject to highly variable condi-

tions. Populations so small that they lose complex tools would also have a less re-

sponsive cultural evolutionary system more generally. Perhaps over a wide range 

of herbivore productivities, human population densities were bistable (or multi-

stable). A high population density equilibrium would generate a fancy technology 

and a rapid evolutionary response to millennial and submillennial scale variation. 

Hence a complex culture could maintain a reasonably high population density 

even in the face of considerable environmental deterioration. A small population 

in the same conditions would have a simple tool kit and a slow response to varia-

tion and hence would remain small. Outside this middle range, an especially rich 

environment might allow a simple system to jump to the complex equilibrium, 

whereas an especially poor one would reduce a complex population to simplicity. 

Perhaps in good times in good places anatomically modern humans and Nean-

derthals could achieve population sizes adequate to sustain more complex tool 

kits, whereas in poorer times and places they could sustain only simpler tech-

nologies. If environments remained poor enough for long enough, a population 

that had achieved Upper Paleolithic complexity might suffer a Tasmanian-style 

loss of complexity and drop back to the Middle Paleolithic equilibrium. This sort 

of dynamic is sometimes called a hysteresis loop. Rather than reacting directly 

to an environmental change, a population will have a strong tendency to remain 

either large or small. Given a suffi ciently large and persistent increase in K, it will 

jump to a higher equilibrium, where it will persist under deteriorating environ-

mental conditions under which the high equilibrium can be sustained but cannot 

be attained by a population at the low equilibrium. Time lags will be built into 

the cultural system. Complex elements of technology will not be gained or lost 

instantly.

We do not seem to have a good sense of potential rates of cultural innova-

tion in the late Pleistocene, but the innovations that make up the Still Bay and 

Howison’s Poort industries appear more rapidly than the best dating can resolve 

(Jacobs et al. 2008). Such cultural responses to climate variation might explain 

the coexistence of technologies with a late Stone Age cast with those of a Middle 

Paleolithic appearance in Africa during much of the last glacial period. The ability 
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of anatomically modern humans to displace “archaic” species, such as the Nean-

derthals, may have depended less on differences in innate abilities and more on 

having attained the complex cultural equilibrium and sustaining it long enough to 

reach such places as Australia, where the environment was so poor that humans 

tumbled back to the simpler Middle Paleolithic equilibrium. Human populations 

could well have imposed their own bit of chaotic dynamics on Ice Age systems.

At least one other process might contribute to the palimpsest mixture of 

mode 3 and mode 4 tool traditions in Africa. When human populations become 

large and sophisticated, they may act as superpredators who cause their prey 

populations to collapse. If human populations collapsed in the wake of the prey 

collapse, the small resulting population might revert to mode 3 tools, and the 

small, unsophisticated human populations might then allow prey populations to 

recover. The west Eurasian Upper Paleolithic is apparently unique in maintaining 

mode 4 tool kits for tens of millennia. This population or populations lived on 

the maritime end of the huge Mammoth Steppe biome. Both Neanderthals and 

anatomically modern humans lived in central Siberia, at least during the favorable 

interstadial periods, but apparently never penetrated the Beringian region.

Beringia consisted of eastern Siberia, the expanse of the Bering Straits re-

gion exposed by low sea level and much of Alaska and far northwestern Canada. 

Hoffecker and Elias (2007) suggest that fuelwood shortages in the Verkhoyansk 

mountains on the western boundary of Beringia formed an impenetrable barrier 

to human settlement until substantial climate warming allowed dwarf shrubs and 

trees to invade the barrier region 15,000–14,000 years ago. Big game animals de-

pended on heavy fur, not fi res, as protection from cold and probably spread read-

ily across the Verkhoyansk barrier. Thus Mammoth Steppe hunters would have 

had what amounted to a large natural protected reserve in Beringia. Perhaps even 

larger areas emptied of people during stadial periods, enlarging the reserve.

A large literature has recently developed on using protected reserves to 

manage fi sheries [see Botsford et al. (2003) and other papers in the same special 

issue of Ecological Applications for an introduction]. Africa is entirely tropical 

or temperate and has no areas where large game biomass would have had a natu-

ral refuge. South and East Asia and Australia also lack the potential for natural 

reserves. West and north Eurasia may have formed the only region where such a 

refuge existed, thus explaining why a permanent population of superpredatory 

humans could exist there without driving the populations of game animals too low 

to sustain a population capable of making mode 4 tools.

Note that sheer head count is not the most important demographic factor 

contributing to the Tasmanian effect. Caspari and Lee (2006) used dental wear 

to roughly estimate the ratio of old to young adult individuals in hominin fossil 

death assemblages from the Australopithecines to the Upper Paleolithic. Slight in-

creases are evident at each major change of taxa with one major exception: Upper 

Paleolithic people had an old to young adult ratio of about 2.1, whereas the Eu-

ropean Neanderthals had a ratio of only 0.35. In Southwest Asia, where Neander-
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thals and anatomically modern humans coexisted using Mousterian technology, 

the small dental sample suggests that both populations had an old to young ratio 

of about 1. Caspari and Lee suggest that a cultural rather than a genetic change 

was responsible for this difference. The changes are reciprocal in that older adults 

can accumulate and transmit more culture than young adults and can accumulate 

more individually acquired knowledge. Caspari and Lee’s analysis lends weight 

to the idea that large-brained hominins of the late Pleistocene had bi- or multi-

stable population dynamics.

Demographic Transitions of the Holocene

Richerson et al. (2001) argue that the relatively tranquil environments of 

the Holocene favored subsistence innovations focused on intensive exploita-

tion of low-ranked but highly productive plant resources. On the evidence of the 

Ohalo II site (Weiss et al. 2004), the ability to exploit such resources went some 

way back into the Pleistocene, even though archaeological and stable isotope 

analysis suggests that late Pleistocene human diets were primarily carnivorous. 

The new plant-rich protoagricultural and agricultural subsistence systems led 

to a diet with poor nutritional balance. These systems were also vulnerable to 

weather extremes. When there was a heavy dependence on domesticated plants, 

subsistence depended on a few species, magnifying vulnerability to weather ex-

tremes. In the Pleistocene the out-of-equilibrium ecosystems generated by the 

Dansgaard-Oeschger cycles would have made a suitable plant-rich subsistence 

system a too rapidly moving target for cultural evolution to track. Even in the 

Levantine region, where the evolution of agriculture was early and rapid, a few 

thousand years were required to move from a marginal use of crops to a near 

complete dependence on them. In the late Pleistocene such a span of time would 

include multiple Dansgaard-Oeschger cycles, not to mention much more varia-

tion at the millennium to century time scales than in the Holocene (Ditlevsen et 

al. 1996). Thus in the Holocene but not in the Pleistocene, a relatively simple 

trajectory of one cultural innovation after another leading to continuing popula-

tion increase was possible.

Richerson and Boyd (2001) reviewed several hypotheses regarding the rate 

of Holocene cultural evolution. Diamond’s (1997) proposal that the size and ori-

entation of continents played a large role is best known of these. His idea is basi-

cally the Tasmanian effect writ large. Indeed, Diamond (1978) commented on 

the simplifi cation of the material culture of Tasmania many years ago. Our own 

suspicion is that the rate of increase of social sophistication is typically the rate-

limiting factor in the Holocene progressive increase in cultural sophistication. 

This idea goes back at least to Marx; a revolution was necessary because the 

potential of industrial technology had outrun the capabilities of capitalist social 

organization, just as the earlier bourgeois revolution ended the rigidities of the 

feudal social system and sowed the seeds of the technological advances that led 
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to the Industrial Revolution. We do not discount the importance of technology, 

only that improvements in technology are not typically the rate-limiting step ex-

cept temporarily at small time scales. As with population pressure, we see here 

the importance of getting the time scale of the processes right. If we were to add 

a positive effect of population size on the cultural innovation rate to the model 

behind Figure 1, we conjecture that we could produce an exponential curve of 

increasing cultural sophistication that would fi t the data from Holocene Eurasia 

and (at a slower rate) the rest of the world.

The actual Holocene trajectory in any one location was much less smooth 

than that portrayed in Figure 1. Natural climate fl uctuations (Curtis et al. 1996), 

human-induced environmental deterioration (Diamond 2005), and internal or ex-

ternal political events resulted in increases in cultural sophistication and population 

size that were often punctuated by more or less dramatic crashes. Turchin (2003) 

explored an interesting model of internally driven collapse. Borrowing from the 

medieval geographer Ibn Khaldun, Turchin modeled the interaction between the 

growth of an elite ruling class and a producer peasant class. At low densities, elites 

have a positive impact on the productive class by providing government services. 

The society grows, but the elite class, drawing a relatively larger income from 

taxes than the producers can enjoy, grows faster than the producers. Eventually, 

the too large elite extracts a heavy tax burden from the producers while providing 

public services ineffi ciently, and the system collapses. Depending on details, the 

collapse can affect mainly the elite class (civil war and dynastic replacement) or 

both classes, as in the fall of the Western Roman Empire or the collapse of most 

of the Mayan city-states. Turchin’s model is entirely sociological and contains no 

cultural evolution or environmental deterioration. Thus it creates no rising trend in 

population and cultural sophistication.

As an aside, the ecological models that Turchin used have general appli-

cation to humans (Efferson 2008). They could be easily mated to evolutionary 

models (Richerson and Boyd 1998). In addition, we could incorporate the niche 

construction modeling framework of Odling-Smee et al. (2003). These investiga-

tors consider both cultural evolution and the effects of persistent modifi cations of 

the environment by human activity. The long-term degradation of soils by erosion 

or their buildup by terracing and the import of organic matter are two examples 

of niche construction with opposite effects on human populations. Humans are 

master niche constructors and destructors, and accounting for these processes is 

an important addition to our modeling tool kit.

The Modern Demographic Transition

A Figure 1 style model with the rate of cultural evolution a positive func-

tion of population size will create a dramatic singularity when the rate of tech-

nological process approaches the human intrinsic rate of natural increase. The 

population will explode, as indeed it did in the last couple of centuries. In “mod-

ernizing” countries—fi rst England and then the culturally European countries and 
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now China, India, Brazil, and more—the rate of technical and social innovation 

exceeded the intrinsic rate of natural increase of humans, and per capita incomes 

began to rise. This added a new impetus to technological progress as the savings 

and investment rates of societies increased, not least investments in human capi-

tal that fed innovation. Investments in health science and health care raised the 

intrinsic rate of increase and lowered death rates across the life span. Absolutely 

enormous rates of population increase became possible. They are currently real-

ized in a few countries and in isolated subcultures in countries that have otherwise 

undergone dramatic reductions in fertility, such as conservative Anabaptist con-

gregations (Hurd 2006).

In most populations demographic events have moved dramatically against 

the population explosion trends of the initial generations of modernity. Nothing 

in the models so far considered predicts the modern demographic transition. But 

evolutionary social scientists have taken considerable interest in explaining the 

demographic transition (Borgerhoff Mulder 1998). Some models are premised 

on the idea that great wealth per capita would exaggerate the lack effect because 

wealthy people could leave large endowments to a few children, who might in 

turn maximize the number of their grandchildren so that increasing wealth will 

cause an adaptive reduction in the number of children (Rogers 1992). If parents 

had as many children as they could afford, those children might not be competi-

tive in their turn. The parents who overproduce children might not produce as 

many grandchildren as parents who produced fewer children but endowed them 

with better food, a better education, and an inheritance to spend raising the grand-

kids. A large sample of men’s reproductive success in Albuquerque showed no 

signs of such an effect (Kaplan et al. 1995). On average, the best way to have lots 

of grandchildren was to have lots of children. No quantity-quality tradeoff ap-

peared. Kaplan (1996) went on to suggest that large material endowments trigger 

a maladaptive psychology of overinvestment in children. The current situation in 

wealthy countries is evolutionarily unprecedented. Thus the hypothesis that some 

aspect of human psychology misfi res in such an environment is plausible.

The nature of cultural transmission in modern societies is also unusual 

compared with that in traditional societies. Important parts of child socialization 

are given over to professional teachers. Many of the important people in our lives 

are people who occupy other achieved roles, such as bosses at work and military 

offi cers. Richerson and Boyd (1984) developed a model in which selection for 

success in achieved roles, such as being a teacher, favors education. Educational 

success is in turn favored by growing up in a small family and by delaying mar-

riage to fi nish school and establish a career. People in prestigious achieved roles, 

perhaps inadvertently, transmit small-family norms to people they infl uence. 

Small-family norms can spread in the model even if the absolute importance of 

kin in socialization is greater than the importance of people in achieved roles. 

This happens if the people in achieved roles are more highly selected for small 

families than people in kin roles are for having larger families. In any case, the 

relative importance of kin also declined as residential mobility moved people 
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from traditional villages to cities. Because kin tend to have an interest in each 

other’s reproductive success, a social network dense in kin will support pronatal-

ist norms, whereas networks rich in co-workers and unrelated friends will allow 

pronatalist norms to be lost by successive generations of modern humans. This 

is another mechanism by which modernization favors small-family norms (New-

son et al. 2007). Mass media provide alluring opportunities to spend wealth on 

consumption goods rather than on large families. In Latin America, telenove-

las (extremely popular soap opera style programs featuring the romantic lives 

of middle-class people) have been implicated in the demographic transitions in 

these countries (Bongaarts and Watkins 1996).

Some of the evidence in favor of a cultural-evolutionary explanation for the 

modern demographic transition comes from various special cases in which non-

modern populations underwent modernlike demographic transitions or in which 

modern populations failed to undergo transitions. Knauft (1986) cites historical 

evidence that ancient and early modern cities had a combination of low birth 

rates and high death rates compared with rates in the countryside. If these data 

are correct, then urban society was essentially a cultural parasite that persisted 

by tempting countryfolk with the bright lights because they were otherwise de-

mographically unsustainable. In recent history the urban upper and professional 

classes often reduced their birth rates in the early modern period long before such 

practices became general (Livi-Bacci 1977). On the other side, religious groups, 

such as the Amish, maintain high population growth even as they participate in the 

modern economy as commercial farmers. They do so by culturally isolating them-

selves from modern achievement-oriented occupations, avoiding mass media, and 

living in kin-based communities (Kraybill and Bowman 2001). If the modern de-

mographic transition is a sort of culturally transmitted disease, then Anabaptists 

have a culturally transmitted immunity! In many modernized countries fertility 

has fallen well below replacement with little sign of a fl attening or return to even 

replacement levels. Efferson’s (2008) ecological model has a scenario in which 

human population goes to 0 as wealth per capita goes to infi nity.

Conclusion

Culturally transmitted innovations have probably been a major determinant 

of human demographic behavior for as long as we have been a seriously cul-

tural species. Our argument in this paper is that nothing about humans in the last 

250,000 years makes sense without considering cultural innovations (and their 

loss from small populations). The role that cultural innovation has played seems 

to be divisible into at least four regimes during that period. The fi rst was the re-

gime from about 250,000 to 75,000 years ago. Innovation rates were slow (but 

not necessarily zero) during this period, and human populations remained small. 

From our vantage point, this regime is puzzling. For more than a whole glacial-

 interglacial cycle, large-brained hominins making moderately complex stone 

tools made little progress toward modernity. The climates that these people lived 
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in were highly variable in space and time but were only subtly different from the 

last glacial-interglacial cycle when so much happened.

After about 75,000 years ago and certainly by about 50,000 years ago, a sig-

nifi cant modernization of cultures took place, resulting, most spectacularly, in the 

Upper Paleolithic of western Eurasia. Once developed, however, the Upper Paleo-

lithic seems to have been conservative. Elsewhere, as far as the evidence goes, human 

populations perhaps varied under the infl uence of fl uctuating environments, and cul-

tural advances were often followed by retreats. Or perhaps the advances are illusory. 

Because the pace of change in both of these regimes is far below the rates of cultural 

change we know to be possible, something must have been severely limiting the 

rates of cultural innovation relative to more recent times. One possible answer is 

that genetic factors limited cultural innovation and evolution as late as about 50,000 

years ago. Our big-brained ancestors may have lacked some crucial cognitive innova-

tion that made language or some similar essential cultural innovation impossible, as 

Klein (2009) argues. Another possible answer is that environmental factors limited 

cultural innovation rates. If human populations remained small, perhaps hemmed in 

by competing predators, cultural advance would be limited by the Tasmanian effect. 

On the other hand, when the drumbeat of the Dansgaard-Oeschger cycles increased 

in frequency about 50,000 years ago, culture may have become a decisive advantage 

in competition with slower adapting members of the top carnivore niche. Perhaps 

that advantage was particularly strong on the western end of the Mammoth Steppe, 

leading to the Upper Paleolithic phenomenon. The maritime fringe of western Eur-

asia may have sustained Upper Paleolithic hunters in numbers that permitted them 

to maintain a complex culture during the most unfavorable parts of the Dansgaard-

Oeschger cycles. Of course, a mixture of these two explanations (and others) is also 

plausible. Perhaps the increase in frequency of the Dansgaard-Oeschger cycles just 

before anatomically modern humans left Africa selected for genes that made higher 

rates of cultural innovation possible, rather than the innate cognitive change having 

been a rare mutation that would have been favored in earlier environments.

The transition to the Holocene ushered in a regime of sustained increases 

in human population densities and cultural sophistication. This period looks most 

like the simple Malthusio-Darwinian model we have reviewed in this paper. The 

rate-limiting factor over this 11,500-year-long regime was probably the rate of 

cultural innovation, possibly especially the rate of innovation of social institu-

tions. But the rate of coevolutionary response on the part of genes could have 

been a major factor, especially in the fi rst half of the Holocene. Probably the rate 

of innovation on average increased during this regime because the rate of innova-

tion is tied to population size, as Jared Diamond argues, or because of some other 

autocatalytic process.

When the rate of cultural innovation rose to the point at which rates of tech-

nological progress permitted subsistence to advance at near the intrinsic rate of 

increase of human populations or above it, the modern regime began. Populations 

fi rst exploded, but then the modern demographic transition occurred. Consump-

tion per capita continues to rise, surely temporarily, while populations begin to 
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stabilize or contract. We hope to transition to a sustainable regime, but the form 

that will take is for futurologists to guess about.

The tools we have for understanding the past grow at modern rates. The 

archaeological, historical, and statistical data improve. Some areas are neglected. 

For example, archaeologists could expend more effort trying to estimate popula-

tion sizes and rates of technological progress so that we could better understand 

the relationship between them. Mathematical models appropriate to study long-

run  technological change, especially the link between demography and innova-

tion rates, are still limited. Experimentalists are in their golden age, especially in 

biology. We already know a bit about when various important genes came under 

selection. We are rapidly learning more about how genetic and developmental reg-

ulatory systems work. Surely almost everything we write today will look childish 

in the not so distant future. A small slice may look prophetic. J. B. S. Haldane 

caught the strange nature of our quest, we think, in his remark that “the world is not 

only queerer than we suppose, it is queerer than we can suppose!”

Received 13 January 2009; revision accepted for publication 27 April 2009.
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